close

slide imageslide image

摩爾定律指的是積體電路上可容納的電晶體數目,約每隔十八個月到兩年增加一倍、性能也提升一倍,所以與其說是“定律”,其實它更像是一個用來描述積體電路產業演進軌跡的指標

那~什麼是電晶體?

slide image

slide imageslide image

電晶體

電晶體(英語:transistor),早期音譯為穿細絲體,是一種類似於閥門的固態半導體元件,可以用於放大、開關、穩壓、訊號調變和許多其他功能。在1947年,由約翰·巴丁、沃爾特·布拉頓和威廉·肖克利所發明。當時巴丁、布拉頓主要發明半導體三極體;肖克利則是發明PN二極體,他們因為半導體及電晶體效應的研究獲得1956年諾貝爾物理獎。
電晶體由半導體材料組成,至少有三個對外端點(稱為極),(C)集極、(E)射極、(B)基極,其中(B)基極是控制極,另外兩個端點之間的伏安特性關係是受到控制極的非線性電阻關係。電晶體基於輸入的電流或電壓,改變輸出端的阻抗,從而控制通過輸出端的電流,因此電晶體可以作為電流開關,而因為電晶體輸出信號的功率可以大於輸入信號的功率,因此電晶體可以作為電子放大器。

 

slide image

電晶體主要分為兩大類:雙極性電晶體(BJT)和場效應電晶體(FET)

電晶體一般都有三個極,其中一極兼任輸入及輸出端子,(B)基極不能做輸出,(C)集極不能做輸入之外,其餘兩個極組成輸入及輸出對。 電晶體之所以有如此多用途在於其訊號放大能力,當微細訊號加於其中的一對極時便能控制在另一對極較大的訊號,這特性叫增益。
當電晶體於線性工作時,輸出的訊號與輸入的訊息成比例,這時電晶體就成了一放大器。這是在類比電路中的常用方式,例如電子放大器、音頻放大器、射頻放大器、穩壓電路;
當電晶體的輸出不是完全關閉就是完全導通時,這時電晶體便是被用作開關使用。這種方式主要用於數位電路,例如數位電路包括邏輯閘、隨機存取記憶體(RAM)和微處理器。另外在開關電源中,電晶體也是以這種方式工作。
而以何種形式工作,主要取決於電晶體的特性及外部電路的設計。
雙極性電晶體的三個極,射極(Emitter)、基極(Base)和集極(Collector); 射極到基極的微小電流,會使得射極到集極之間的阻抗改變,從而改變流經的電流;

場效應電晶體的三個極,源極(Source)、閘(柵)極(Gate)和汲極(Drain)。 在閘極與源極之間施加電壓能夠改變源極與汲極之間的阻抗,從而控制源極和汲極之間的電流。

電晶體因為有三種極性,所以也有三種的使用方式,分別是射極接地(又稱共射放大、CE組態)、基極接地(又稱共基放大、CB組態)和集極接地(又稱共集放大、CC組態、射極隨隅器)。
電晶體在應用上有許多要注意的最大額定值,例如最大電壓、最大電流、最大功率。若在超額的狀態下使用,會破壞電晶體內部的結構。每種型號的電晶體還有像是直流放大率hFE、NF噪訊比等特性,可以藉由電晶體規格表得知。

電晶體與真空管

在電晶體發展之前,真空管是電子設備中主要的功率元件。

優點
電晶體因為有以下的優點,因此可以在大多數應用中代替真空管:
沒有因加熱陰極而產生的能量耗損,應用真空管時產生的橙光是因為加熱造成,有點類似傳統的燈泡。
體積小、重量低,因此有助於電子設備的小型化。
工作電壓低,只要用電池就可以供應。
在供電後即可使用,不需加熱陰極需要的預熱期。
可透過半導體技術大量的生產。
放大倍數大

限制
相較於真空管,電晶體也有以下的限制:
矽電晶體會老化及失效。
高功率、高頻率的應用中(例如電視廣播),因真空管中的真空有助提昇電子移動率,效果會比電晶體要好。
固體電子元件在應用時比較容易出現靜電放電現象。

slide image

真空管

真空管具有發射電子的陰極(K)和工作時通常加上高壓的陽極或稱屏極(P)。燈絲(F)是一種極細的金屬絲,而電流通過其中,使金屬絲產生光和熱,而去激發陰極來放射電子。柵極(G)它一定置於陰極與屏極之間。柵極加電壓是抑制電子通過柵極的量,所以能夠在陰極和陽極之間對電流起到控制作用。
在二十世紀中期前,因半導體尚未普及,基本上當時所有的電子器材都使用真空管,形成了當時對真空管的需求。但在半導體技術的發展普及和平民化下,真空管因成本高、不耐用、體積大、效能低等原因,最後被半導體取代了。但是可以在音響擴大機、微波爐及人造衛星的高頻發射機看見真空管的身影;許多音響特別使用真空管是因為其特殊音質,在音響界、老舊的真空管常與最新的數位IC共存。另外,像是電視機與電腦陰極射線管顯示器內的陰極射線管以及X光機的X射線管等則是屬於特殊的真空管。
對於大功率放大(如百萬瓦電台)及衛星(微波大功率)而言,大功率真空管及行波管仍是唯一的選擇。對於高頻電焊機及X射線機,它仍是主流器件。

 

arrow
arrow
    創作者介紹
    創作者 SwayChat 的頭像
    SwayChat

    SwayChat 吃喝玩樂 生活體驗

    SwayChat 發表在 痞客邦 留言(0) 人氣()